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Abstract�A Genomic island (GI) is a part of genomic sequence 

that originally transferred from other organisms, and now it is 

stabilized into the host genome. The detection of GIs is significant 

to evolutionary studies as well as biomedical research. Different 

computational methods for GI detection often lead to different 

predicted GIs, raising the issues of what predicted GIs are true 

GIs. In this paper, we propose an ensemble learning approach 

that uses the prediction results of multiple GI tools, filters out 

noisy predictions, and generates consensus prediction results. The 

performance evaluation test has shown that our ensemble 

approach was more accurate than any other single GI prediction 

program. The coefficient correlation analysis has also shown that 

our approach was more correlated to other programs overall, 

strongly suggesting the reliability of our ensemble algorithm for 

GI prediction. 

Keywords-ensemble method; genomic island; prokaryote; 

sequence analysis. 

I.  INTRODUCTION 

Genomic islands (GIs) are parts of genomic regions that 
have the origin of horizontal gene transfer. Because of their 
origin, GIs can be found different from other parts of genomic 
sequences in their sequence composition, such as GC content, 
codon usage, and k-mer nucleotide frequency. GIs often 
contain mobile genes, such as integrase gene and transposase 
gene. In addition, some genomic islands are flanked by transfer 
RNA (t-RNA) genes. 

The identification of genomic islands is significant to 
biomedical research and pharmaceutical companies. For 
instance, the detection of pathogenic GIs can help 
microbiologists to understand the mechanisms of pathogenicity 
of the organism, and thus promote pharmaceutical companies 
to design related vaccines and antibiotics. On the other hand, 
some other GIs of bacterial genomes contain second metabolite 
associated genes, such as POLYKETIDES genes. Therefore, 
identifying such GIs can help researchers understand the 
machinery of metabolisms, and promotes pharmaceutical 
companies to produce natural products of medicines at the 
large scale. 

Computational methods have been developed for GI 
detection. Existing prediction tools include AlienHunter [1], 
Centroid [2], COLOMBO SIGI-HMM [3], IslandPath [4], 

INDeGenIUS [5], and PAI-IDA [6]. All of these prediction 
tools use one or multiple features of sequence composition, 
mobile genes, or tRNA gens. For example, AlienHunter uses 
the variable-length k-mers to measure sequence compositional 
bias, while COLOMBO SIGI-HMM measures codon usage 
bias as a genome sequence composition signature. The 
prediction results of GIs using different approaches were 
different, making it difficult for users to decide which predicted 
GIs are truly GIs. IslandViewer [7] provides the interface for 
all the predicted results of three programs, COLOMBO SIGI-
HMM, IslandPath and IslandPick [8]. The system itself does 
not decide which predicted GIs are true GIs, leaving the users 
to make decisions of which predicted GIs are true GIs. 

It is not uncommon that different computational approaches 
generate different prediction results in the field of 
bioinformatics. For instance, different motif-finding programs 
usually generate different predicted motifs [9]. To solve this 
type of problem in motif-finding, researchers have used 
ensemble learning approaches to combine the prediction results 
of multiple programs. Such ensemble-based motif-finding 
approaches include BEST [10], EMD [9], and MotifVoter [11]. 
The prediction results using ensemble-based approaches could 
be improved in general from these studies.  

In this paper, we propose our ensemble-based method for 
genomic island prediction.  We use the prediction results of 
five GI tools, AlienHunter COLOMBO SIGI-HMM, 
IslandPath, INDeGenIUS, and PAI-IDA, make the votes on 
predicted results, and generate final consensus GI regions using 
our ensemble algorithm. Both coefficient correlation and 
prediction accuracy analysis suggested the reliability of our 
predicted GIs. Therefore, we believe the usefulness of our 
ensemble-based GI tool for the future genome annotation. This 
paper is organized as follows: Section 2 describes our 
computational framework as well as ensemble algorithm. 
Section 3 shows the performance results of our ensemble 
method. We conclude in Section 4, with the discussion of our 
future work. 

II. METHODS 

A. Computational Framework 

The computational framework for GI prediction is as 
follows: 
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genome G = {g1, g2, ! gi, !gm}, we define |gi| to be the 
number of tools that predict gi to be within GI locations, and 
accordingly, we have a string of votes, i.e., GV = {|g1| |g2| ! 
|gi | ! |gm|}.  

One naive scheme to obtain final GIs is to separate the 
string GV into a set of substrings such that each substring 
contains a number of contiguous genes, where all genes" |g.| 
are greater than a threshold value. We consider the region 
covering the genes in a substring to be a GI region, and the 
remaining part of the genome to be non-GI regions. One of 
the potential problems is that this scheme relies on the votes 
of each gene, thus any under-predicted gene (i.e., does not 
predict it as a GI gene) could result in the split of GIs, and 
consequently lead to too many small sized, physically close 
GIs (e.g., 2-3 kb). These small sized GIs should be part of a 
big GI, since GIs tend to be large, usually covering dozens 
and even several hundred genes. One alternative solution is 
to decrease the threshold value, so that neighboring separate 
GI regions can be formed into a big GI, but that will cause 
another problem, i.e., including non-GI regions into GIs.   

To avoid the problem mentioned above, we use the 
overall score of a genomic region, rather than individual 
votes, to measure the GI qualification of the region. To do 
so, we separate the string GV into a set of substrings {GI"1, 

GI"2, !, GI"i , !, GI"n}, with each substring containing a 
number of genes, and all genes" |g.| > 0. Now we measure 
whether any adjacent pair (GI"i, GI"i+1) can be merged into a 
big GI based on the overall score of all genes from the first 
gene in GI"i to the last gene in GI"i+1. If the overall score 
meets with the threshold value, the two regions should be 
merged. Otherwise, it will not be merged. The details of our 
ensemble algorithm for GI prediction are shown in Figure 2. 
Our ensemble algorithm, EGID, was implemented in Java, 
and it could be executed in Linux operating systems.  

D. Performance evaluation 

We used genomic island datasets picked by Islandpick [8] 
as the benchmark to evaluate our approach. The benchmark 
datasets contain 771 positives and 3770 negatives from 118 
genomes. Let true positives (TP) be the nucleotides in the 
positive benchmark dataset predicted to be genomic islands; 
true negatives (TN) be the nucleotides in the negative 
benchmark dataset predicted to be non-genomic islands; false 
positives (FP) be the nucleotides in the negative benchmark 
dataset predicted to genomic islands; and false negatives 
(FN) be the nucleotides within the positive benchmark 
dataset not predicted to be genomic islands. We measure four 
metrics as follows,  

 (1) 

 (2) 

 (3) 

 (4) 

We also measure correlation coefficient between any pair 
of tools. Particularly, we use the predicted GI results of one 
tool as the benchmark dataset to measure TP, TN, FP, and FP 
of another tool, and we define the correlation coefficient 
(CC) as: 

 (5) 

 
Figure 3.  Performance comparison of genomic island programs 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. Prediction accuracy analysis 

To test the performance of our ensemble based GI 
prediction method, we have predicted GIs on 118 genomes 
corresponding to those used in the benchmark GI datasets. 
We then measured sensitivity, specificity, nucleotide level 
performance coefficient (nPc), and F-measure. For the 
comparison purpose, we also measured the prediction 
accuracies of five other tools used in our ensemble method. 
Figure 3 shows the values of nPc and F-measure for each 
tool, and it is easy to see our ensemble approach tops all 
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Algorithm Detect-GIs (GI1, GI2,.., GIm) 

Input: m sets of GI locations by m GI tools 

Output: a final set of GI locations 

Steps: 

1. For any gene gi in the genome,  

|gi|  the number of tools that predict gi 

within GI locations; 

2. Let GV = {GI"1, GI"2, !, GI"i , !, GI"n}, and 

3. Let GI"i = (gi,1 gi,2 !gi,m), where all |gi, .| > 0; 

4. Let GI"i+1 = (gi+1,1 g i+1,2 !g i+1,n), where all 

|gi+1, .| > 0; 

5. Let k = the number of genes between GI"i and 

GI"i+1; 

6. Compute s = Score(GI"i, GI"i+1, k); 

7. If s > threshold 

Merge the region between GI"i and GI"i+1,  

i.e., GI"new = (gi,1 gi,2 !gi+1,n); 

8. Repeat the merging process (Step 3-6) using  

an adjacent GI" pair;  

9. Post-process GIs. 

End of Algorithm 

Figure 2: Ensemble algorithm for GI detection 
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other tools based on these two measurements, indicating the 
performance improvement by our ensemble method. 

B. Correlation coefficient analysis 

We also measured the correlation coefficient between 

any pair of tools, as shown in Table 2. In general, a high 

correlation coefficient indicates that two tools predict 

similar GIs. Overall, the correlation coefficient values 

between our tool and others are higher than those of other 

pairs, suggesting that our predicted results were based on the 

consensus of other prediction tools.  

TABLE II.  CORRELATION COEFFICIENT FOR ALL PAIRS OF TOOLS 

 

C. An example: predicted GIs in Escherichia coli E24377A 

We used the genome of E. coli E24377A as an example 
to compare the predicted GIs of our tool with those of five 
other tools. Figure 4 shows the graphic representation of 
predicted GIs of all tools. In general, our tool picks the 
consensus GIs predicted by other tools. For instance, 
AlienHunter predicted two GIs, with the locations of 
(4,842,500 -> 4,860,000) and (4,865,000 -> 4,905,000), 
COLOMBO SIGI-HMM predicted four locations, 
(4,838,828 -> 4,840,287), (4,843,821 -> 4,848,206), 
(4,876,346 -> 4,879,082), (4,890,592 -> 4,897,097), 
INDeGenIUS predicted two GIs, with the locations of 
(4,870,001 -> 4,880,000), (4,890,001 -> 4,900,000), 
IslandPath predicted two GIs, with the locations of 
(4,839,010 -> 4,858,342), (4,868,452 -> 4,886,769). PAI-
IDA does not predict any GI in this region. Based on these 
prediction results, EGID predicted a GI from genome 
location of 4,838,828 to 4,905,291, covering 82 genes (See 
Figure 4 label 1). 

IV. CONCLUSION AND FUTURE WORK 

We have implemented an ensemble-based approach for 
GI prediction. Pairwise coefficient correlation analysis of GI 
tools have shown that our GI tool is more correlated to other 
tools overall when compared with other pairs of tools. In 
addition, our GI tool is more accurate than any other tools 
when using the benchmark dataset generated by IslandPick.  

Since our software tool uses five existing tools, with each 
of tools requiring specific genome data and file formats. It is 
required that users download these file formats through 
NCBI web server first before running our software tool, thus 
making it inconvenient for users to do it manually. In our 
future work, we will develop a GUI interface that provides 
the functionality of automatic downloading such genome 
files through NCBI server. The GUI will also automatically 
set up the environments for users to run the whole 
computational framework and generate final GI locations. 

Figure 4.  Circular representations of the E. coli E24377A (NC 009801) 
showing predicted GIs, with each circle predicted by each program. The 

predicted GIs from the outer to the inner circle are EGID, AlienHunter, 

COLOMBO, INDeGenIUS, Island-Path, and PAI-IDA. The shaded parts 
show the predicted GIs by EGID, and evidenced GIs by other programs. 
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Tools Alien Hunter Island Path
COLOMBO

SIGI-HMM
INDeGenIUS PAI-IDA EGID

Alien Hunter 1.000 0.264 0.317 0.452 0.247 0.573

Island Path 0.264 1.000 0.220 0.268 0.218 0.398

COLOMBO

SIGI-HMM
0.317 0.220 1.000 0.255 0.198 0.368

INDeGenIUS 0.452 0.268 0.255 1.000 0.355 0.512

PAI-IDA 0.247 0.218 0.198 0.355 1.000 0.353

EGID 0.573 0.398 0.368 0.512 0.353 1.000

Average 0.475 0.395 0.393 0.474 0.395 0.534
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