
CHAPTER

Hierarchical k-Means:
A Hybrid Clustering
Algorithm and Its Application
to Study Gene Expression in
Lung Adenocarcinoma

4

Mohammad Shabbir Hasan and Zhong-Hui Duan

Department of Computer Science, College of Arts and Sciences, University of Akron,

Akron, USA

1 INTRODUCTION
Gene products such as proteins or RNA are created from the inheritable informa-

tion contained in a gene (Hunter and Holm, 1992). Traditional molecular biology

focuses on studying individual genes in isolation for determining gene functions.

However, it is not suitable for determining complex gene interactions or for

explaining the nature of complex biological processes due to the large number

of genes. For this purpose, examining the expression pattern of a large number

of genes in parallel is required (Michaels et al., 1998). With the advancement of

large-scale transcription profiling technology, DNA microarrays have become a

useful tool that allows the analysis of the gene expression pattern at the genome

level (Gresham et al., 2008). In genetic-mapping studies, DNA microarrays have

been widely used on polymorphisms between parental genotypes and have facili-

tated the discovery of gene expression markers (Gresham et al., 2008; Wang et al.,

2009). Due to its importance, efficient algorithms are necessary to analyze the

DNA microarray data set accurately (Hasan, 2013). Studies have showed that a

group of genes with similar gene expressions are likely to have related gene

functions (Mount, 2004). Therefore, how to find the genes that share similar

expression patterns across samples is an important question that is frequently asked

in the DNA microarray studies (Qin et al., 2014).

Clustering, which is a useful technique to constitute unknown groupings of

objects (Kaufman and Rousseeuw, 2009), has become an important part of gene

expression data analysis (Qin et al., 2014; Eisen et al., 1998). By investigating

the clusters of genes having similar expression patterns across samples, researchers

Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology

# 2015 Elsevier Inc. All rights reserved.
51



can elucidate gene functions, genetic pathways, and regulatory circuits. Clustering

helps to find a distinct pattern for each cluster, as well as more information about

functional similarities and gene interactions within the cluster (Hasan and Duan,

2014). For clustering DNA microarray data, a good number of algorithms have

been developed that include k-means (Tavazoie et al., 1999), hierarchical cluster-

ing (Eisen et al., 1998; Luo et al., 2003; Wen et al., 1998), self-organizing maps

(Tamayo et al., 1999; T€or€onen et al., 1999; He et al., 2003), support vector

machines (Brown et al., 2000), Bayesian networks (Friedman et al., 2000), and

fuzzy logic approach (Woolf and Wang, 2000). In addition to these algorithms,

there are others that use genomic information, along with gene expression data,

to improve clustering efficiency. Algorithms that fall into this category include

an ontology-driven clustering algorithm (Wang et al., 2005) and the ones that

use information about TS2 upstream regions of the coding sequences and gene

expression profiles to get more biologically relevant clusters (Holmes and

Bruno, 2000; Barash and Friedman, 2002; Kasturi et al., 2003).

Among the existing clustering algorithms, k-means and hierarchical clustering

algorithms are the most commonly used. k-means is computationally faster than

hierarchical clustering and produces tighter clusters than the hierarchical clustering

algorithm. On the other hand, the hierarchical clustering algorithm computes a

complete hierarchy of clusters and hence is more informative than k-means.

Despite these advantages, both of these algorithms suffer from some limitations.

The performance of k-means clustering depends on how effectively the initial num-

ber of clusters (i.e., the value of k) is determined, and the advantage of hierarchical

clustering comes at the cost of low efficiency. Moreover, being computationally

expensive, both of these algorithms impede the wide use of these algorithms in

gene expression data analysis (Garai and Chaudhuri, 2004; Ushizawa et al.,

2004; Bolshakova et al., 2005). As a solution to this problem, a combined approach

was proposed by Chen et al. (2005), who first applied the k-means algorithm to

determine the k clusters and then fed these clusters into the hierarchical clustering

technique to shorten the merging cluster time and generate a treelike dendrogram.

However, this solution still suffers from the limitation of determining the initial

value for k (Hasan, 2013; Hasan and Duan, 2014).

In this chapter, we propose a new algorithm, hierarchical k-means, that com-

bines the advantages of both k-means and the hierarchical clustering algorithm

to overcome their limitations. Combining different algorithms to overcome their

own limitations and produce better results is a popular approach in research

(Che et al., 2011, 2012; Hasan et al., 2012). In this proposed algorithm, initially

we applied the hierarchical clustering algorithm and then used the result to decide

the initial number of clusters and fed this information into k-means clustering to

obtain the final clusters. Since similar gene expression profiles indicate similarity

in their gene functionalities (Azuaje and Dopazo, 2005), after applying the

proposed algorithm to the microarray data set of lung adenocarcinoma using gene

ontology (GO) annotations, we explored the change in the enrichment of molecular

functionalities of the genes of each cluster for normal tissue and KRAS-positive
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tissues. Our results showed that in each cluster, genes were grouped together based

on their expression pattern and molecular functions, which indicate the correctness

of this proposed algorithm.

2 METHODS
k-means clustering algorithm: For clustering genes, k-means clustering, a well-

known method for cluster analysis partition expression levels of n genes into k clus-

ters, so that the total distance between the cluster’s genes and its corresponding cen-

troid, representative of the cluster, is minimized. In short, the goal is to partition the n

genes into k sets Si, i¼1, 2…, k in order to minimize the within-cluster sum of

squares (WCSS), defined as

WCSS¼
Xk

j¼1

Xn

i¼1
jjxji" cjjj

2
, (4.1)

where jjxji" cjjj
2
provides the distance between a gene and the cluster’s centroid.

In this clustering algorithm, the initial cluster centroids are selected randomly.

After that, each gene is assigned to the closest cluster centroid. Then each cluster

centroid is moved to the mean of the points assigned to it. This algorithm converges

when the assignments no longer change. Algorithm 4.1 shows the pseudocode of the

k-means clustering algorithm.

Hierarchical clustering algorithm: In gene clustering, hierarchical clustering is

a method of cluster analysis that builds a hierarchy of clusters (as its name indicates).

This clustering method organizes genes into tree structures based on their relation.

The basic idea is to assemble a set of genes into a tree, where genes are joined by very

short branches if they have very great similarity to each other, and by increasingly

long branches as their similarity decreases.

The approaches for hierarchical clustering can be classified into two groups:

agglomerative and divisive. The agglomerative approach is a “bottom-up” approach,

where each gene starts in its own cluster and pairs of clusters are merged as one

moves up the hierarchy. On the other hand, divisive approach is a “top-down”

approach, where all genes starts in one cluster and splits are performed recursively

as one moves down the hierarchy. In this chapter, we mainly focus on the agglom-

erative approach for hierarchical clustering.

The first step in hierarchical clustering is to calculate the distance matrix between

the genes in the data set. The clustering starts once this matrix of distances is com-

puted. The agglomerative hierarchical clustering technique consists of repeated

cycles where the two closest genes having the smallest distance are joined by a node

known as a pseudonode. The two joined genes are removed from the list of genes

being processed and replaced by the pseudonode that represents the new branch.

The distances between this pseudonode and all other remaining genes are computed,
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ALGORITHM 4.1

k-means
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and the process is repeated until only one node remains. Note that there are a variety

of ways to compute distances while dealing with a pseudonode: centroid linkage,

single linkage, complete linkage, and average linkage. In this chapter, we use aver-

age linkage, which defines the distance between two clusters as the average pairwise

distance between genes in cluster Ci and Cj calculated using Eq. (4.2):

δ Ci,Cj

! "

¼

X

x2Ci

X

y2Cj

δ x, yð Þ

ni:nj
, (4.2)

where δ(x,y) is typically given by the Euclidean distance calculated using Eq. (4.3):

δ x, yð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

d

i¼1

xi" yið Þ2

v

u

u

t

: (4.3)

The pseudocode of agglomerative hierarchical clustering using average linkage is

illustrated in Algorithm 4.2.

ALGORITHM 4.2

Hierarchical Clustering
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Hierarchical k-means: In this proposed algorithm, we selected the value of k

(i.e., the number of clusters) in a systematic way. Initially, we used the agglomerative

hierarchical clustering algorithm for clustering the data set using average linkage and

then checked at what level the distance between two consecutive nodes of the hier-

archy was the maximum. Using this information, the value of k is determined, which

is then fed into the k-means clustering algorithm to produce the final clusters. In both

algorithms, the Pearson correlation coefficient (r) was used as the similarity metric

between two samples and 1" rwas used as the distance metric. Algorithm 4.3 shows

the pseudocode of the proposed algorithm.

ALGORITHM 4.3

Hierarchical k-means Clustering
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3 DATA SET
Lung adenocarcinoma, the most frequent type of non-small-cell lung cancer

(NSCLC) accounts for more than 50% of NSCLC, and the percentage is increasing

(Okayama et al., 2012). Recent studies revealed that activation of the EGFR, KRAS,

and ALK genes defines three different pathways that are responsible for a con-

siderable fraction (30%–60%) of lung adenocarcinomas (Pao and Girard, 2011;

Ihle et al., 2012; Janku et al., 2010; Bronte et al., 2010; Gerber and Minna,

2010). The data set used in this research contains expression profiles for 246 samples,

of which 20 samples belonged to normal lung tissue. Out of the remaining 226 lung

adenocarcinoma samples, 127 were with EGFR mutation, 20 with KRAS mutation,

11 with EML4-ALK fusion, and 68 with triple negative cases. The platform used for

this data set was GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133

Plus 2.0 Array. This data set was collected from the GEO database (accession

number GSE31210). The data set contained 54,675 genes. In this study, we consid-

ered 40 samples consisting of 20 samples from normal tissues and 20 samples from

KRAS-positive tissues.

To determine the differentially expressed genes, we performed paired student

t-test (Hsu and Lachenbruch, 2008) and Bonferroni corrections (Bonferroni,

1936), followed by the calculation of the value of fold change of the genes. In this

study, after performing Bonferroni correction, we selected the genes as the most

differentially expressed ones, which have adjusted p-values&0.05. In addition,

we considered only those genes where the value of fold change (increase or decrease)

is significant; i.e., the average fold change between cancer and normal is'2. Besides

this preprocessing, we considered only those genes that are associated with molec-

ular functions according to Gene Ontology (GO).

After performing the t-test,weobtained21,880geneshavingsignificantp-values (&
0.05). We performed Bonferroni correction on these genes and found 1988 genes that

had a significantly adjusted p-value (& 0.05). Adding the fold change criterion, we

reduced the set of differentially expressed genes to 1005. We then performed another

step of filtering to keep only those genes that haveGO terms and responsible formolec-

ular functions. Finally,we cameupwith 464genes in the final data set. The final data set

is given partially in Table 4.1, and the complete data set is available in http://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210 (Accessed 06/18/2013).

4 RESULTS AND DISCUSSION
The result of hierarchical clustering for normal tissue data set is shown in Figure 4.1.

There are 463 interior nodes in the tree where each node is labeled based on the

increasing order of its height. Therefore, the ID for the root is 463. To determine the

number of clusters from the output of hierarchical clustering, we used a bar graph to

show the difference of height between two consecutive interior nodes (see Figure 4.2).
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Table 4.1 A Brief Overview of the Final data set

Affymatrix ID Gene Symbol

Samples

GSM 773551 … GSM 773784

1555579_s_at PTPRM 3441.22 … 3569.13

211986_at AHNAK 4395.68 … 7080.40

222392_x_at PERP 21707.73 … 11350.53

236715_x_at UACA 1303.01 … 1867.76

244704_at NFYB 124.08 … 277.49

… … … … …

211237_s_at FGFR4 22.41 … 11.07

203980_at FABP4 257.25 … 920.44

207302_at SGCG 47.09 … 9.61

210081_at AGER 241.63 … 2001.28

217046_s_at AGER 132.42 … 1016.05
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FIGURE 4.1

Hierarchical clustering of the normal tissue data set.
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FIGURE 4.2

Height difference between two consecutive interior nodes in the hierarchical tree generated

from the normal tissue. Since Pearson distance is used, the maximum height of the tree is 1.



From Figure 4.2, we can see that the difference is the maximum for nodes 461 and

462. As there is a total of 463 nodes in the tree, node 461 is on level 3 from the top.

So, according to the proposed algorithm, the total number of clusters for k-means

clustering should be 4.

Similarly, the number of clusters for the KRAS-positive data set can also be deter-

mined. Figure 4.3 shows the hierarchical clustering of KRAS-positive data set, and

Figure 4.4 shows the height difference between two consecutive nodes. The results

indicate that the number of clusters for KRAS-positive data set should be 4.

After determining the value for the initial number of clusters (k), we passed the

value to k-means algorithms, and k numbers of clusters were formed for both normal

and KRAS-positive tissues. We explored their common features (genes) and

explained the change of molecular function of the genes captured in the clusters
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FIGURE 4.3

Hierarchical clustering of the KRAS positive data set.
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FIGURE 4.4

Height difference between two consecutive nodes in the hierarchical tree generated from a

KRAS-positive data set.
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of both normal tissue andKRAS-positive tissue using GO annotations. For comparing

the molecular function of the clusters of normal tissue and KRAS-positive tissues, we

took one cluster from the normal tissue data set and one from the KRAS-positive data

set that have the maximum number of common genes. Table 4.2 shows the clusters

that we selected for comparing their molecular functions with the number of genes

they have in common.

We explored the molecular functions of the genes in each cluster using GO anno-

tations. Relationships among the genes were represented using a directed acyclic

graph (DAG), termed the GO graph. We used a web-based tool called the Gene

Ontology Enrichment Analysis Software Toolkit (GOEAST) (Zheng and Wang,

2008) to generate these graphs. This graph displays enriched Gene Ontology IDs

(GOIDs) and their hierarchical relationships in molecular function GO categories.

Figures 4.5 and 4.6 show the GO graph for cluster 1 for normal tissue and KRAS-

positive tissue data set, respectively.

In Figures 4.5 and 4.6, boxes represent GO terms, each labeled by its GOID and

term definition. Note that significantly enriched GO terms are shaded yellow. The

degree of color saturation of each node is positively correlated with the significance

of enrichment of the corresponding GO term. Nonsignificant GO terms within the

hierarchical tree are shown as white boxes. In both of these graphs, edges stand

for connections between different GO terms. Edges colored in red stand for the rela-

tionship between two enriched GO terms, black solid edges stand for the relationship

between enriched and unenriched terms, and black dashed edges stand for the rela-

tionship between two unenriched GO terms.

In brief, these two figures show that the significant GO terms GO: 0005488 (bind-

ing) and GO: 0005515 (protein binding) remain the same in both clusters. GO terms

such as GO: 0030234 (Enzyme Regulator Activity), GO: 0019207 (Kinase Regulator

Activity), GO: 0019210 (Kinase Inhibitor Activity), GO: 0019887 (Protein Kinase

Regulator Activity), and GO: 0004860 (Protein Kinase Inhibitor Activity), which

are unenriched in normal tissue, become highly enriched in the KRAS-positive tis-

sues, indicating that our proposed algorithm can cluster representative genes of both

data sets correctly.

To compare the enrichment status of the two clusters better, we used Multi-

GOEAST, which is an advanced version of GOEAST, and it is helpful to identify

Table 4.2 List of the Clusters to Be Compared for the Alteration in Molecular

Function

Clusters to Compare

Number of Genes in CommonNormal Tissue KRAS-Positive

Cluster 1 Cluster 1 20

Cluster 2 Cluster 3 52

Cluster 3 Cluster 4 46

Cluster 4 Cluster 2 69
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the hidden correlation between the two clusters (Zheng and Wang, 2008). Figure 4.7

shows the comparative GO graph for cluster 1 of both data sets.

In the comparative GO graph, significantly enriched GO terms in both clusters

are marked yellow, and light yellow color indicates the GO terms that are enriched

in both clusters. Nodes marked with coral pink indicate the GO terms that are

enriched in the normal tissue data set but not in the KRAS-positive data set. In addi-

tion, green nodes represent the GO terms that are unenriched in normal tissue but

enriched in KRAS-positive tissue. Note that the degree of color saturation of each

node is positively correlated with the significance of enrichment of the correspond-

ing GO term.

Table 4.3 lists the genes associated with the GO terms that are enriched in cluster

1 of the KRAS-positive tissue data set, but not in cluster 1 of the normal tissue data

set. These GO terms are marked green in the comparative GO graph shown in

Figure 4.7. We believe that these are responsible for the alteration of the molecular

activity in the cell and are linked to the development of KRAS lung cancer. Similarly,

we can generate and compare the GO enrichment graph for the rest of the clusters

(see supplementary materials).
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enzyme inhibitor activity
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FIGURE 4.6

GO graph for cluster 1 of the KRAS-positive tissue data set.
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5 CONCLUSIONS
In this chapter, we propose hierarchical k-means, a new combined clustering algo-

rithm designed to cluster genes in a microarray data set based on their expression

levels. In this algorithm, using the output from hierarchical clustering, we system-

atically determined the value of k required for k-means clustering. This way, the pro-

posed algorithm overcomes the limitation of k-means clustering. This proposed

algorithm takes advantage of the ability of hierarchical clustering to get a complete

Table 4.3 GO Terms and Pathways That Are Enriched inMolecular Functions of

the Genes of Cluster 1 of KRAS-Positive Tissue but Unenriched in the Genes

of Cluster 1 of Normal Tissue Data Set

GO ID GO Term

Associated

Genes Pathway

GO:0030234 Enzyme

regulator activity

TIMP3 1 Matrix_metalloproteinases

CDKN1C G1_to_S_cell_cycle_reactome

PAK1 Integrin

mediated_cell_adhesion_KEGG

ECT2 N/A

RALGPS2 N/A

SFN Calcium_regulation_in_cardiac_cells

Smooth_muscle_contraction

GO:0019207 Kinase regulator

activity

CDKN1C G1_to_S_cell_cycle_reactome

SFN Calcium_regulation_in_cardiac_cells

Smooth_muscle_contraction

GO:0004857 Enzyme inhibitor

activity

TIMP3 Matrix_metalloproteinases

CDKN1C G1_to_S_cell_cycle_reactome

SFN Calcium_regulation_in_cardiac_cells

Smooth_muscle_contraction

GO:0019887 Protein kinase

regulator activity

CDKN1C G1_to_S_cell_cycle_reactome

SFN Calcium_regulation_in_cardiac_cells

Smooth_muscle_contraction

GO:0019210 Kinase inhibitor

activity

CDKN1C G1_to_S_cell_cycle_reactome

SFN Calcium_regulation_in_cardiac_cells

Smooth_muscle_contraction

GO:0004860 Protein kinase

inhibitor activity

CDKN1C G1_to_S_cell_cycle_reactome

SFN Calcium_regulation_in_cardiac_cells

Smooth_muscle_contraction

GO:0051018 Protein kinase A

binding

AKAP12 G_protein_signaling

GO:0008179 Adenylate

Cyclase binding

AKAP12 G_protein_signaling

64 CHAPTER 4 Hierarchical k-Means: A Hybrid Clustering Algorithm and Its
Application to Study Gene Expression in Lung Adenocarcinoma



hierarchy of clusters and uses this information in k-means clustering to produce tigh-

ter clusters.

In this study, we examined 40 samples and 464 genes from the data set of lung

adenocarcinoma, which is one of the most frequent types of NSCLC. Out of the 40

samples, 20 were from normal tissue and 20 were from KRAS-positive tissue. We

applied t-test, Bonferroni correction, and fold change cutoff techniques to find the

significantly differentially expressed genes, and among them, only the genes having

GO terms and responsible for molecular functions were included in the final data set.

After applying the proposed clustering algorithms, we obtained four clusters for

both the normal tissue data set and KRAS-positive data set. Hereafter, we examined

the genes contained in each cluster with respect to their molecular functions based on

GO annotation to see what changes in the enrichment of the molecular functions of

genes took place from normal tissues to KRAS-positive tissues. This way, after

checking the change in enrichment of the GO terms, we verified that the proposed

algorithm can cluster representative genes of both data sets based on their expression

patterns. The coherent approach presented in this chapter shows its correctness to

cluster genes, and we believe that it can be generalized for clustering other types

of large data sets as well.
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SUPPLEMENTARY MATERIALS
List of genes of the clusters and detailed results from GO enrichment analysis are

presented in the supplementary figures which can be found at http://www.cs.

uakron.edu/~duan/Chapter04/SupplementaryMaterials.pdf.
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