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Abstract - DNA Microarray technology provides a convenient 

way to investigate expression levels of thousands of genes in a 

collection of related samples during different biological 

processes. Researchers from diverse disciplines such as 

computer science and biology have found it interesting as well 

as meaningful to group genes based on the similarity of their 

expression patterns. Hierarchical clustering and k-means 

clustering are commonly used algorithms to group genes with 

similar expression patterns. However, in spite of having some 

advantages such as producing tighter cluster than other 

algorithms, k-means clustering has some limitations also. The 

performance of k-means clustering algorithm largely depends 

on the selection of the value of k i.e., the number of clusters. In 

this research work, we proposed a new method to combine k-

means clustering with hierarchical clustering to overcome the 

limitation. To test the algorithm, we used microarray data on 

lung adenocarcinoma, the most common type of non-small-

cell cancers. We identified a number of representative genes 

from the group of normal tissue and from the group of KRAS 

mutation tissues. Genes for both of these groups were 

clustered using our proposed method. Finally we conducted 

functional investigation of the differentially expressed genes 

using Gene Ontology database to find changes in the 

enrichment of molecular functions of the genes contained in 

each cluster of both normal and KRAS positive groups. We 

discovered that our proposed method can group genes with 

similar expression pattern together and hence it can be used 

in future for clustering microarray data. 
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1 Introduction 

  In gene expression, gene products such as proteins or 

RNA are created from the inheritable information contained 

in a gene [1]. So far traditional molecular biology has focused 

on studying individual genes in isolation for determining gene 

functions. However it is not suitable for determining complex 

gene interactions as well as explaining the nature of complex 

biological processes. For this purpose, examining the 

expression pattern of a large number of genes in parallel is 

required [2]. DNA microarray technology which is one of the 

most important tools now-a-days for the analysis of gene 

expression patterns has made it possible to view thousands of 

genes expression levels in parallel [3]. This analysis is very 

useful to get information for diagnosis of different diseases 

and efficient algorithms are required to analyze DNA 

microarray datasets accurately. It is believed that a group of 

genes with similar gene expressions are likely to have related 

gene functions [4]. Hence identifying genes with similar 

expression patterns in different phases of the cell cycle or in 

different environmental conditions is an important task.  

Clustering algorithms play an important role in gene analysis 

by separating a dataset of heterogeneous genes into 

homogeneous groups containing similar genes. It helps to 

analyze a group of genes instead of analyzing each one 

individually. After getting appropriate clusters, researchers 

can further investigated the clusters to find distinct pattern for 

each cluster as well as more information about functional 

similarities and gene interactions. A good number of 

algorithms have been developed for clustering DNA 

microarray data so far. These algorithms include k-means 

clustering [5], hierarchical clustering [6-8], self-organizing 

maps [9-11], support vector machines [12], Bayesian 

networks [13] and fuzzy logic approach [14]. Beside these 

algorithms, some algorithms use other genomic information 

along with gene expression data in order to improve 

clustering efficiency. Examples of such algorithms include 

[15] that use gene ontology data with gene expression data 

and [16-18] that clusters genes by using information of 

upstream regions of the coding sequences with gene 

expression profiles to get more biologically relevant clusters.  

K-means clustering algorithm is computationally faster than 

hierarchical clustering and produces tighter clusters than 

hierarchical clustering. On the other hand, hierarchical 

clustering algorithm does not require the number of clusters 

to be known in advance and computes a complete hierarchy 

of clusters. Beside these advantages, however, both of these 

algorithms suffer from some limitations. The performance of 

k-means clustering depends on how effectively the initial 

number of clusters i.e. the value of k is determined. 

Moreover, these algorithms are computationally expensive 

which impede the wide use of these algorithms in gene 

expression data analysis [19-21]. To overcome these 

limitations, a combined hierarchical k-means clustering 

method has been proposed in [22] which firstly applies k-

means algorithm in each cluster to determine k clusters and 

then feed those clusters to hierarchical clustering technique to 

shorten merging clusters time while generating a tree-like 

dendrogram. But still this algorithm suffers from the 

limitation of determining the initial value for k.  



In this paper we present a new algorithm that combines both 

hierarchical clustering and k-means clustering. The goal is to 

take the advantages of both algorithms to overcome the 

limitations of k-means clustering algorithm. We use the result 

of hierarchical clustering to decide the initial number of 

clusters and then feed this information to k-means clustering 

to obtain the final clusters. In microarray data analysis, 

clustering genes to find out the biologically relevant groups 

based on their expression profiles is one of the basic 

techniques. Similarity in gene expression profiles indicates 

similarity in their gene functionalities also [23]. After getting 

the new clusters, we explore the change in enrichment of 

molecular functionalities of the genes of each cluster for 

normal tissue and adenocarcinoma lung cancer tissue by 

using Gene Ontology (GO) annotations. 

2 Materials and Methods 

 Lung adenocarcinoma is the most frequent type of non-

small-cell lung cancers (NSCLC) and it accounts for more 

than 50% of NSCLC and the percentage is increasing [24]. 

Recent studies have shown that activation of the EGFR, 

KRAS and ALK genes defines 3 different pathways which 

are responsible for a considerable fraction (30%–60%) of 

lung adenocarcinoma [25-29]. The dataset used in this 

research contains expression profiles for 246 samples where 

20 samples belong to normal lung tissue. Out of 226 lung 

adenocarcinomas samples, 127 are with EGFR mutation, 20 

with KRAS mutation, 11 with EML4-ALK fusion and 68 

samples are with triple negative cases. Platform used for this 

dataset is GPL570 [HG-U133_Plus_2] Affymetrix Human 

Genome U133 Plus 2.0 Array. This dataset was collected 

from GEO database (accession number GSE31210). The 

dataset contains 54675 genes and out of the 246 samples, for 

this research work, we considered 40 samples that consist of 

20 samples from normal tissue and 20 samples from KRAS 

positive tissues. 

 

To determine the differentially expressed genes, we 

performed paired Student t-test and Bonferroni correction 

followed by the calculation of the value of fold change of the 

genes. In this study, after performing Bonferroni correction, 

we selected the genes as the most differentially expressed 

which have adjusted p-values ≤ 0.05. In addition to that, we 

considered only those genes where the value of fold change 

(increase or decrease) is significant i.e. the average fold 

change between cancer and normal is greater than or equal to 

2. Beside these preprocessing, we considered only those 

genes that are associated with molecular functions according 

to the Gene Ontology (GO). Figure 1 shows the flow diagram 

of the data preprocessing. After performing t-test, we 

obtained 21,880 genes which had significant p-value (≤ 0.05). 

We performed Bonferroni correction on these genes and 

found 1,988 genes which had a significant adjusted p-value (≤ 

0.05). Adding the fold change criterion, we reduced the set of 

differentially expressed genes to 1,005. We then performed 

another step of filtering to keep only those genes that have 

Gene Ontology (GO) terms and responsible for molecular 

functions. Finally we came up with 464 genes in the dataset. 

The final dataset which is also termed as filtered dataset in 

this paper is given partially in Table 1 and the complete 

dataset is available in [30]. 

 

 
 

 Figure 1: Flow diagram of data preprocessing 

 
To overcome the limitation of k-means clustering algorithm, 

in our proposed method, we selected the value of k i.e. the 

number of clusters in a systematic way. Initially we use the 

hierarchical clustering algorithm for clustering the dataset and 

then check at which level the distance between two 

consecutive nodes of the hierarchy is the maximum and from 

this result the value of k is determined which is then used as 

the value of k for the k-means clustering. In both algorithms, 

Pearson correlation coefficient (r) is used as the similarity 

metric between two samples and 1-r is used as the distance 

metric.  
 
Table 1: A brief overview of the final dataset 
 

Affymatrix ID 
Gene 

Symbol 

Samples 

GSM 

773551 

… GSM 

773784 

1555579_s_at PTPRM 3441.22 … 3569.13 

211986_at AHNAK 4395.68 … 7080.40 

222392_x_at PERP 21707.73 … 11350.53 

236715_x_at UACA 1303.01 … 1867.76 

244704_at NFYB 124.08 … 277.49 

… … … … … 

211237_s_at FGFR4 22.41 … 11.07 

203980_at FABP4 257.25 … 920.44 

207302_at SGCG 47.09 … 9.61 

210081_at AGER 241.63 … 2001.28 

217046_s_at AGER 132.42 … 1016.05 

 



3 Results and Discussions 

 Figure 2 shows the hierarchical clustering of normal 

tissue dataset. There are 463 interior nodes in the tree where 

each node is labeled based on the increasing order of its 

height. Therefore the root has its ID 463. To determine the 

number of clusters from the output of hierarchical clustering, 

we used a bar graph to show the difference of height between 

two consecutive interior nodes and it is shown in Figure 3. 

 
Figure 2: Hierarchical clustering of normal tissue dataset 

 

 

 

Figure 3: Height difference between two consecutive interior 

nodes in the hierarchical tree generated from the normal 

tissue. Since Pearson distance is used, the maximum height of 

the tree is 1. 

 

From Figure 3 we can see that the difference is the maximum 

for node 461 and node 462. As there are total 463 nodes in 

the tree, node 461 is in level 3 from the top. So according to 

the approach we are discussing here, the total number of 

clusters for k-means clustering should be 4. 

Similarly we can determine the number of clusters for the 

KRAS positive dataset. Figure 4 shows the hierarchical 

clustering of KRAS positive dataset and the height difference 

between two consecutive nodes is shown in Figure 5. The 

results indicate the number of clusters for KRAS positive 

dataset should be 4. 

 
Figure 4: Hierarchical Clustering of KRAS positive dataset 

 

 
Figure 5: Height difference between two consecutive nodes in 

the hierarchical tree generated from KRAS positive dataset. 

 

Clearly we see different clusters formed from normal tissue 

and cancer tissue. We explore their common features (genes) 

and explain the change of molecular function of the genes 

captured in the clusters of both normal tissue and KRAS 

positive datasets using Gene Ontology (GO) annotations. For 

comparing the molecular function of the clusters of normal 

tissue and KRAS positive tissues, we took one cluster from 

normal tissue dataset and one from KRAS positive dataset 

which have maximum number of common genes. Table 2 

shows the clusters we have selected for comparing their 

molecular functions with the number of genes they have in 

common. 

 

Table 2: List of the clusters to be compared for the alteration 

in molecular function 

 

Clusters to compare Number of genes 

in common Normal Tissue  KRAS positive  

Cluster 1 Cluster 1 20 

Cluster 2 Cluster 3 52 

Cluster 3 Cluster 4 46 

Cluster 4 Cluster 2 69 

 



We explain the molecular functions of the genes in each 

cluster using GO annotations and their relationship are 

represented using a directed acyclic graph (DAG) which is 

also termed as GO graph in this paper. To generate these 

graph, we used a web based tool Gene Ontology Enrichment 

Analysis Software Toolkit (GOEAST) [31]. This graph 

displays enriched Gene Ontology IDs (GOIDs) and their 

hierarchical relationships in Molecular Function GO 

categories. Here boxes represent GO terms, labeled by its 

GOID and term definition. Note that significantly enriched 

GO terms are marked yellow. The degree of color saturation 

of each node is positively correlated with the significance of 

enrichment of the corresponding GO term. Non-significant 

GO terms within the hierarchical tree are shown as white 

boxes. In this graph, edges stand for connections between 

different GO terms. Edges with red color stand for 

relationship between two enriched GO terms, black solid 

edges stand for relationship between enriched and un-

enriched terms; black dashed edges stand for relationship 

between two un-enriched GO terms. 

 

Figure 6 and 7 shows the GO graph for the cluster 1 of 

normal tissue dataset and cluster 1 of KRAS positive dataset 

respectively. 

 

 Figure 6: GO graph for cluster 1 of normal tissue data set. 

  

Figure 7: GO graph for cluster 1 of KRAS positive data set 

 

In brief, from these two figures we see that, the significant 

GO terms GO: 0005488 (binding) and GO: 0005515 (protein 

binding) remain same in both clusters. GO terms such as GO: 

0030234 (Enzyme Regulator Activity), GO: 0019207 (Kinase 

Regulator Activity), GO: 0019210 (Kinase Inhibitor 

Activity), GO: 0019887 (Protein Kinase regulator Activity) 

and GO: 0004860 (Protein Kinase Inhibitor Activity) which 

are un-enriched in normal tissue, become highly enriched in 

the KRAS positive tissues. 

 

For better comparing the enrichment status of the two 

clusters, we used Multi-GOEAST which is an advanced 

version of GOEAST and it is helpful to identify the hidden 

correlation between the two clusters [31].  Figure 8 shows the 

comparative GO graph of the clusters discussed above. 



 

Figure 8: Comparative GO graph for comparing GO enrichment status of Cluster 1 of normal tissue dataset and Cluster 1 of 

KRAS positive dataset. 

 

 

In the comparative GO graph, significantly enriched GO 

terms in both clusters are marked yellow, light yellow color 

indicates the GO terms which are enriched in both clusters. 

Nodes marked with coral pink indicate the GO terms which 

are enriched in normal tissue dataset but not in KRAS 

positive dataset. In addition to that, nodes with green color 

represent the GO terms which are un-enriched in normal 

tissue but enriched in KRAS positive tissues. Note that, the 

degree of color saturation of each node is positively 

correlated with the significance of enrichment of the 

corresponding GO term. 

Table 3 lists the genes associated with the GO terms which 

are enriched in the cluster 1 of KRAS positive tissue dataset 

but not enriched in the cluster 1 of normal tissue dataset and 

these GO terms which are marked with green color in the 

comparative GO graph shown in Figure 8. We believe these 

are responsible for the alteration of the molecular activity in 

the cell and are linked to the development of KRAS lung 

cancer. Similarly we can generate and compare the GO 

enrichment graph for the rest of the clusters. 

4 Conclusions 

 In this paper we proposed a combined clustering 

algorithm to cluster genes in a microarray dataset based on 

their expression levels. In the algorithm the number of 

clusters, i.e. the value of k which is required for k-means 

clustering algorithm is determined from the output of 

hierarchical clustering. Using this systematic way of 

determining the value of k, this approach overcomes the 

limitation of k-means clustering. This proposed method of 

clustering takes the advantage of hierarchical clustering to get 

a complete hierarchy of clusters and uses this information to 

determine the number of clusters to be used in k-means 

clustering for producing tighter cluster. 

In this study we examined 40 samples and 464 genes from the 

dataset of KRAS lung denocarcinoma which is one of the 

most frequent types of non-small-cell lung cancers. Out of the 

40 samples, 20 were from normal tissue and 20 were from 

KRAS positive tissues. We applied t-test, Bonferroni 

correction and fold change cutoff to find the significantly 

differentially expressed genes and among them only the genes 

having GO terms and responsible for molecular functions 

were included in the final dataset. 

After applying the clustering algorithms, we obtained 4 

clusters for both normal tissue dataset and KRAS positive 

dataset. Hereafter, we examined the genes contained in each 

cluster with respect to their molecular functions based on 

Gene Ontology (GO) annotation to see what are the changes 



in the enrichment of the molecular functions of the genes took 

place from normal tissues to KRAS positive tissues.  

In summary, we presented a coherent approach to examine 

alterations of molecular activities in different environmental 

settings such as in cancer cells. Furthermore, the proposed 

clustering algorithm can be generalized for clustering other 

types of large datasets. 

 

Table 3: GO Terms and pathways which are enriched in molecular functions of the genes of Cluster1 of KRAS positive tissue 

but un-enriched in the genes of Cluster1 of normal tissue dataset 

GO ID GO Term Associated 

Genes 

Pathway 

GO:0030234 Enzyme Regulator Activity TIMP3 Matrix_Metalloproteinases 

CDKN1C G1_to_S_cell_cycle_Reactome 

PAK1 Integrin mediated_cell_adhesion_KEGG 

ECT2 ----- 

RALGPS2 ----- 

SFN Calcium_regulation_in_cardiac_cells 

Smooth_muscle_contraction 

GO:0019207 Kinase Regulator Activity CDKN1C G1_to_S_cell_cycle_Reactome 

SFN Calcium_regulation_in_cardiac_cells 

Smooth_muscle_contraction 

GO:0004857 Enzyme Inhibitor Activity TIMP3 Matrix_Metalloproteinases 

CDKN1C G1_to_S_cell_cycle_Reactome 

SFN Calcium_regulation_in_cardiac_cells 

Smooth_muscle_contraction 

GO:0019887 Protein Kinase Regulator 

Activity 

CDKN1C G1_to_S_cell_cycle_Reactome 

SFN Calcium_regulation_in_cardiac_cells 

Smooth_muscle_contraction 

GO:0019210 Kinase Inhibitor Activity CDKN1C G1_to_S_cell_cycle_Reactome 

SFN Calcium_regulation_in_cardiac_cells 

Smooth_muscle_contraction 

GO:0004860 Protein Kinase Inhibitor 

Activity 

CDKN1C G1_to_S_cell_cycle_Reactome 

SFN Calcium_regulation_in_cardiac_cells 

Smooth_muscle_contraction 

GO:0051018 Protein Kinase A Binding AKAP12 G_Protein_Signaling 

GO:0008179 Adenylate Cyclase Binding AKAP12 G_Protein_Signaling 
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